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Abshact. We present a novel method of linearizing  the^ Fisher equation asymptotically in 
time. ie. we use a nonlinear transformation to convert the initial value problem for the 
Fisher equation into an initial value problem for the diffusion equation for a class. of 
initial conditions. The analytic result we obtain is in excellent agreement with numerical 
simulations. Our method easily g&eralizes lo other reaction-diffusion equations also. 

Many important physical phenomena are described by nonlinear partial differential 
equations. In particular, two classes of nonlinear partial differential equations have 
been the subject of considerable theoretical and numerical interest, namely: 

(i) those arising from completely integrable. infinite-dimensional Hamiltonian sys- 
tems [ 1 ] ; and 

(ii) the so-called reaction-diffusion equations, which combine the effects of a local 
reaction with those of spatial diffusion [Z]. 

For the first class of nonlineai partial differential equations mentioned above, there 
has been much progress towards solving the initial value problem for arbitrary initial 
conditions. Powerful techniques l i e  the inverse scattering transform and Backlund 
transformations enable the solution of these nonlinear equations by reducing the prob- 
lem to one involving a sequence of linear equations [l]. The reduction of the problem 
of solving a nonlinear partial differential equation to the problem of solving related 
linear equations is often referred to as a linearization of the nonlinear partial differential 
equation. A particularly well known example is that of the Hopf-Cole transform [3], 
which linearizes Burgers’ equation [4] (also in the first class mentioned above) hy a 
nonlinear transformation of the dependent variable. The resultant linear equation is 
merely the diffusion equation. 

There has been considerably less progress in solving the general initial value problem 
for reaction-diffusion equations. For a scalar field, these have the general form 

Ur(r. t )  = f ( u ( ~ ,  t ) )  + V W ,  t )  (1) 

where u(r, t )  is an order parameter field (e.g. population density, magnetization, chemi- 
cal concentration) defined as a function of space (r) and time ( 1 ) .  The functionf(u(r, I ) )  
is usually a nonlinear function which~models the local reaction. Particular interest has 
focused upon the casesf(u) = U -  U* (namely, the Fisher equation, which describes the 
dynamics of geographically structured populations [ 5 ] )  and f (u)  =U- 11’ (namely, the 
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timedependent Ginzburg-Landau or TDGL equation, which describes the dynamics of 
the order-disorder transition 161). For the one-dimensional (ID) case, Aronson and 
Weinberger [7] have demonstrated that a broad class of initial conditions for (1) (under 
certain weak constraints onf(u)) converge to a travelling-wave kink solution with a 
unique velocity. In general, the analytic form of this solution (referred to as a 'cline') 
is as yet unknown, to the best of onr knowledge. In arbitrary dimensions, Kawasaki 
et a1 [SI have used singular perturbation techniques to obtain an approximate asymp- 
totic solution to the initial value problem for the TDCL equation. Because of the large 
number of approximations involved, their solution is not a good approximation to the 
actual solution (obtained numerical1y)T. 

A similar approach has also been applied by Puri et al. [ 1 I] to the Fisher equation 
in arbitrary dimensions. Again, the resultant analytic solution is not a good approxima- 
tion to the actual solution (obtained numerically) though it does approach the correct 
asymptotic velocity. 

The singular perturbation approach of Kawasaki et al. [8] and Puri et al. [ 111 is 
equivalent to nonlinear transformations of the dependent variable u(r, t )  which (after 
a somewhat unjustifiable approximation) transform the TDGL or Fisher equations into 
the diffusion equation. As already pointed out, the untenable approximations involved 
result in an analytic solution that does not closely mimic the actual solution. In this 
paper, we present a novel method of linearizing reaction-diffusion equations. Our lin- 
earization is asymptotically exact. Unfortunately, as we will see shortly, the linearization 
is only valid for a certain class of initial conditions. However, for representative initial 
conditions i,n this classs, the agreement of our analytic solution with the numerical 
results is excellent. We present our linearization scheme in the context of the Fisher 
equation here. However, our approach readily generalizes to other reaction-diffusion 
equations also. 

As we mentioned earlier, the Fisher equation in arbitrary dimensions has the form 

(2) 
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ut@, t )=u(r ,  t ) -u(r ,  t)2+vzu(r, t ) .  

For the Fisher equation, only solutions with u(r, t ) > O  are of physical interest as (2) is 
unstable for u(r, t )  10. Our transformation of the dependent variable u(r, t )  is motivated 
by the singular perturbation result for the initial value problem of the Fisher equation 
1111, namely 

t )  u(r, t )  = 
1 + uo(r, t )  (3) 

where ~'(r, I) satisfies the linear part of the Fisher equation, namely u"(r, t )  = 
e'('fvz)u(r, 0). We consider the nonlinear transformation 

This transformation would seem to imply that we cannot have u(r, t ) =  1 for any finite 
times as that would correspond to f(r, t )  = CO. However, as we see shortly it turns out 
that I/f(r, t )  (and notf(r, I)) satisfies the diffusion equation asymptotically in time. 

t We should point out, however, that their solution provides a good statistical description of the defeets 
(interfaces) in the system and gives excellent results for the limedependent structure factor. This fact has 
been exploited by Puri 191 and Bray and Pun [IO] to calculate the timedependent structure factor for the 
Z-component and n-component TDGL equations, respectively. 
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Thus, we need to impose the constraint that u(r, f )  #O rather than u(r, t )  # 1 for all 
finite times. From the nonlinear transformation (4). we find that the partial differentia1 
equation satisfied by f (r, f )  is 

The singular perturbation approach is equivalent to neglecting the nonlinear term in 
(5) so thatf(r, f )  satisfies the diffusion equation. But this is an unjustified approximation 
and one can actually do much better, as we demonstrate. If we restrict ourselves to 
functions f (r, t )  which are non-zero as t -m,  we can neglect e-' in the denominator 
of the nonlinear terms of ( 5 )  for long times. Therefore, asymptotically in time, ( 5 )  
becomes 

 which is equivalent (after dividing both sides by f (r, t)') to 

Thus, the variable 1 /f (r, t )  obeys the diffusion equation and we have been successful 
in linearizing the Fisher equation for a class of initial conditions (asymptotically in 
time). The restriction on the initial conditions arises because the above procedure 
becomes invalid iff@, t )  becomes 0 at any point. We have 

and, therefore, u(r, 0) cannot take the value 0 anywhere. Thus, our linearization is only 
valid for the class of initial conditions which lie uniformly above 0. For this class of 
initial conditions, the asymptotic solution to the initial value problem for the Fisher 
equationis ' . 

Clearly, the most interesting class of initial conditions for Fisher equation consist of 
profiles which go through 0 as these are the initial conditions which evolve into travel- 
ling-wave (cline) solutions. The class of initial conditions considered here translate 
uniformly in time towards the fixed point U*= 1. Nevertheless, OUT linearization is of 
considerable methodological interest. Furthermore, as we will see shortly, our analytic 
solution is in excellent agreement with numerical results. 

Before presenting our numerical results, we remark that (9) gives the exact result 
of homogenous initial conditions, namely 

e'@) 
I - U(O) + e'u(0) ' 

U ( f )  = 

This is in contrast to the singular perturbation results in (3), which gives an incorrect 
result for the homogenous case. For arbitrary initial conditions which lie 
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Figure 1. Comparison of results from a numerical simulation of the onedimensional Fisher 
equation with our analytic expressions. The simulation was done using a simple Euler 
discretization scheme on a lattice of length L=5  with periodic boundary conditions. The 
mesh sires were Ar=O.O5 and Ar=0.00025. The initial condition (shown in the first frame) 
consists of uniformly distributed random fluctuations of amplitude 0.2 about a background 
value of 0.85. Results are shown in three diferent frames for times 0.05, 0.15 and 0.25 with 
the solid l i e  representing the numerical solution; the dashed line representing the analytic 
solution from (9) in the text; and the dotted line (which is barely distinguishable from the 
numerical result) representing a first-order perturbation result with the analytic solution of 
(9) as its zeroth-order term. 

uniformly above 0, we have compared the results of a ID' numerical simulation with 
our analytic result (9) in figure 1. The initial condition (labelled as 'Time =O.O') consists 
of uniform random fluctuations of  amplitude^ 0.2 about a background value of 0.85. 
Our simulation was performed using a simple Euler discretization scheme on a lattice 
of length L=5 with periodic boundary conditions. The mesh sizes of our simulation 
was Ax=O.O5 and At=0.00025. Figure 1 shows the results of our simulation as a solid 
line for times 0.05, 0.15.and 0.25. The analytic form of (9) is denoted by the dashed 
curve in the different frames and the agreement with the numerical result is seen to be 
very good. We can make the agreement almost perfect by treating e-' as a small term 
in ( 5 )  and carrying out a first-order perturbation expansion for 1 /f (r, f) as follows. If 
we define g(v, I )  = 1 /f ( r ,  I), (5)  becomes 

If we expand the denominator of the second term on the right-hand side of (1 l) ,  we 
obtain 
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A systematic perturbative improvement of our result (8) for 1 / f ( r ,  f) is obtained in 
the usual fashion by introducing a parameter A (which we will subsequently set equal 
to 1) and expanding g(r, t )  as 

m 

g(r, t )  = C a"g("'(r,~t). (13) 
/,=a 

Replacing this in (12) and matching terms in each order, we find that g"'(r, t )  satisfies 
the diffusion equation (as expected) and g(')(r, t )  satisfies the diffusion equation with a 
source term, namely 

g$')(r, t )  = V2g"'(r, t )  - 2 e-'[Vg(''(v, t)]' 

,V2g'"(r, t )  -F(r, t ) .  (14) 
This equation is easily solved using Green's functions as 

where d is the dimensionality and we set g"'(r, 0) =O. The corresponding first-order 
perturbation theory result for u(r, f) is obtained from the nonlinear transformation (4) 
withf(r, f) = I /[g"'(r, t)+g"'(r, f)]. 

In figure 1, we plot the analytic result from this first-order perturbation theory as 
a dotted line. It is almost indistinguishable from the numerical solution. Figure 2 shows 
the absolute value of the differences (denoted by e(x, t ) )  between 
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Figure 2. Modulus of differences e(x, f) versus x between the numerical solution and our 
analytic solution from (9) (denoted by a dashed line): and between the numerical solution 
and the result From first-order perturbation theory around the solution from (9) (denoted 
by a dotted line). The simulation is the Same as that For figure 1 and we show results For 
times 0.05. 0.10, 0.15 and 0.25. 
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(i) the actual solution and the analytic form from (9) (denoted by the dashed line); 
and 

(ii) the actual solution and the first-order perturbation theory result (denoted by 
the dotted line). 
The maximum error associated with the analytic solution of (9) is O(IO-*)). On the 
other hand, the maximum error associated with the first-order perturbation theory 
result is O(lO-') and is often only O(10-6). 

Figure 3 shows our numerical results for another initial condition, consisting of 
uniformly distributed random fluctuations of amplitude 0.75 about a uniform back- 
ground of 4.5. Again, the analytic result (9) (denoted by a dashed line) is in very good 
agreement with the numerical result (denoted by a solid line). Furthermore, the first- 
order perturbation theory result (denoted by a dotted line in figure 3) is once again 
almost indistinguishable from the numerical result. Figure 4 shows the absolute value 
of the errors associated with our approximations for the simulation of figure 3. 

At this stage, we should emphasize that the agreement of the numerical solution 
with our analytic form improves progressively with time and the agreement is even 
better at times later than those shown in figures 1-4. This is because our initial assump- 
tion about e-' is exact asymptotically in time. Furthermore, both solutions are rapidly 
attracted to the same homogenous solution (namely equation (IO)) and the amplitude 
of fluctuations about this homogenous solution decay sharply in time. Given our initial 
assumption about the smallness of e-' at large f, it may appear that our analytic form 
would be inappropriate for the relatively early times shown in figures 1-4. However, 
our numerical results for a wide range of initial data (representative examples of which 
were shown) indicate that our analytic form is reasonable even for earlier times than 
the underlying assumption would suggest. 
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Figure 3. Similar to figure 1, except the initial condition (labelled by Time=O.O) now 
consisu of uniformly distributed random fluctuations of amplitude 0.75 about a background 
value of 4.5. Symbols have the same meaning as in figure 1. 
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Figure 4. Similar to figure 2, except that the differences between the numerical simulation 
and the analytic results are for the simulation depicted in figure 3. Symbols have the Same 
meaning as in ligure 2. 

As t-m, both the numerical solution and our analytic form tend to u*=l. For 
initial conditions which lie sufficiently close to U* = 1 so that we need consider only 
linear fluctuations about U* = 1, our analytic form (9) becomes 

u(r, t)n. 1 -e-'emZ[1 -u(v, o)]. (16) 

But this is identical to the solution obtained directly by considering only linear fluctua- 
tions around U* = 1 for the Fisher equation, suggesting that our analytic form is exact 
as t-m. 

For completeness, we point out that we have also compared our numerical results 
for the Fisher equation with 

(i) the analytic expression from singular perturbation theory as in (3) and a second- 
order perturbation theory around it; and 

(ii) the analytic expression from a fourth-order perturbation theory around the 
uniformly translating homogenous solution in (IO) of the Fisher equation. 
In each of the above cases, the agreement with the numerical solution is so bad that 
we do not even show these comparisons on our figures. 

As we remarked earlier, our methodology is applicable to other reaction-diffusion 
equations also. We have also applied it to the TDGL equation, namely 

u,(r, t )=u(r ,  t ) -u ( r ,  t)3+v2u(u, 1). (17) 

For the TDGL equation, the nonlinear transformation analogous to (4) is 

eff(r, t )  
[It [e'f(r, t)]*]"2 

u(r, 1)  = 
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which is also motivated by the corresponding singular perturbation result [SI. The 
nonlinear transformation is such that we confine ourselves to solutions for which 
I u(r, t )  I < 1 for all finite times. A similar sequence of steps as before leads us to the 
analytical result for the TDGL equation (analogous to (9)) 

S~ Pun’ and A J Bray 

(19) 

In this case, the quantity which satisfies the diffusion equation is 1 /f(r, I)* and not I /  
f(r, f), as before. Furthermore, the initial conditions are restricted to lie uniformly 
between 0 and f l  or 0 and -1 and the corresponding sign for the solution in (19) is 
+ I  or -1. For this class of initial conditions, the numerical results are again in excellent 
agreement with the analytic result from (19). Similar analytic solutions can be derived 
for other reaction-diffusion equations also but we do not present these here as we have 
already amply illustrated our methodology. 

To summarize: we have presented a novel method of asymptotically transforming 
the problem of solution of the initial value problem for the Fisher equation to the 
problem of solution of the diffusion equation for a class of initial conditions. Our 
method is valid for initial conditions which lie uniformly above 0 and gives excellent 
agreement with numerical simulations of the Fisher equation, even for relatively early 
times. If we improve our analytic approximation by a first-order perturbation expan- 
sion, the agreement with the numerical result is almost perfect. Our method easily 
generalizes to other reaction-diffusion equations and we have also presented an analytic 
result for the time-dependent Ginzburg-Landau equation, again for a restricted class 
of initial conditions. 
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